A Concise Synthesis of (+)-Polyoxamic Acid and (+)-5-O-Carbamoyl Polyoxamic Acid

In Su Kim, Qing Ri Li, Guang Ri Dong, Seol Hee Woo, Hyun-ju Park, Ok Pyo Zee, Young Hoon Jung*

College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
Fax +82(31)2907773; E-mail: yhjung@skku.ac.kr
Received 12 August 2008

SYNLETT 2008, No. 19, pp 2985–2988
Advanced online publication: 12.11.2008
DOI: 10.1055/s-0028-1083629; Art ID: U08608ST

Abstract: We report the concise synthesis of (+)-polyoxamic acid and (+)-5-O-carbamoyl polyoxamic acid from L-xylose in seven or six steps, respectively. The key steps include a diastereoselective amination of syn-1,2-polybenzyl ethers using chlorosulfonyl isocyanate (CSI) and the one-pot introduction of carbamates into the allylic benzyl ether and primary hydroxyl moieties.

Key words: polyoxamic acid, polyoxin, chlorosulfonyl isocyanate, amination, sugar

α-Amino acids comprise a number of important building blocks of living systems, and are the principal components of naturally occurring biologically active compounds. These compounds and their derivatives have attracted considerable attention as potential medical agents on account of their interesting physiological and pharmacological activities. As a consequence the development of methods for synthesizing α-amino acids has been an area of intense research over the last decade. Moreover, the increasing demand for these compounds has prompted the development of new synthetic methodologies.

(+)-Polyoxamic acid (1; Figure 1) is an acyclic trihydroxylated α-amino acid that is used as an important synthetic building block for the formation of peptidiyl nucleoside antifungal polyoxin J (3; Figure 1), which consists of thymine polyoxin C and 5-O-carbamoyl polyoxamic acid (2; Figure 1). In particular, polyoxin J, isolated from Streptomyces cacaoi var. asoensis, exhibits potent inhibitory activity against chitin synthase, which is an important component of the fungal cell wall structure. In addition, it has powerful therapeutic activity against the human pathogen, Candida albicans.

Due to the potent biological activity and structural relationship with polyoxins, several synthetic approaches to produce polyoxamic acid (1) and its O-carbamoyl derivative 2 have been reported. However, these synthetic approaches involve a large number of steps. Therefore, the development of efficient and concise synthetic strategies for compounds 1 and 2 is still an active field.

As part of an ongoing research program directed towards the stereoselective amination of various allylic ethers us-

![Figure 1 Structures of (+)-polyoxamic acid (1), (+)-5-O-carbamoyl polyoxamic acid (2), and polyoxin J (3)](image-url)
Scheme 2
Reagents and conditions: (a) (i) CSI, toluene–hexane (10:1), –20 °C, 36 h; (ii) 25% Na₂SO₃, r.t., 24 h; (iii) 6 N HCl, EtOAc, r.t., 2 h; (b) (i) O₃, CH₂Cl₂, –78 °C, 1 h; (ii) PPh₃, r.t., 1 h; (c) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, t-BuOH, H₂O, r.t., 3 h; (d) (i) Pd/C, H₂, 6 N HCl, MeOH, r.t., 12 h; (ii) DOWEX-50Wx8.

The synthesis of compound 1 began with 2,3,4-tri-O-benzyl-L-xylpyranose (4), which could be easily prepared from commercially available L-xylene according to the methodology reported in the literature (Scheme 1).⁷

A Wittig olefination of compound 4 with DMSO anion in THF at 60 °C afforded the olefin 5 as a ca. 2:2:1 mixture of cis/trans isomers in 86% yield.⁸ The hydroxyl moiety of compound 5 was then converted into the tetrabenzyl ether 6 in 90% yield.⁹ The regioselective and diastereoselective CSI reaction of compound 6 was carried out in a mixture of toluene and hexane (10:1) at –20 °C for 36 hours, followed by desulfonation with aqueous 25% sodium sulfite solution to give the desired syn-1,2-amino alcohol 7 with diastereoselectivity (syn/lanti = 8.8:1 by NMR analysis) in 74% yield.¹⁰ The diastereoselectivity of compound 7 can be explained by the neighboring group effect, whereby the NHCbz group orientation retains its original configuration through double inversion of the configuration.⁷ Ozonolysis of compound 7 afforded a separable mixture of desirable aldehyde 8¹¹ and its diastereomer. Finally, Pinnick oxidation¹² provided the acid 9,¹³ which was then hydrogenated using Pd/C to afford (+)-polyoxamic acid (1)¹⁴ with a specific rotation, [α]₂⁵D +2.2 (c 1.0, H₂O) [lit.⁵α [α]₂⁵D +2.1 (c 1.0, H₂O)], and identical spectral data (¹H and ¹³C NMR) to that reported in the literature.⁵α

For the synthesis of 5-O-carbamoyl polyoxamic acid (2) as a side chain of polyoxin J, we initially focused on a one-pot preparation of biscarbamate 10 from compound 5 via the CSI-mediated stereoselective amination of the cin- namyl benzyl ether moiety and the urethane elaboration of the alcohol moiety (Scheme 2). A reaction of compound 5 with CSI in the presence of Na₂CO₃ at –20 °C, followed by reduction of the N-chlorosulfonyl group, furnished the desired biscarbamate 10 in low yield (12%). However, in the absence of Na₂CO₃, treatment of compound 5 with eight equivalents of CSI followed by work-up using 6 N HCl provided the desired compound 10, in 63% yield, with a diastereoselectivity of 7.2:1.¹⁵ These results suggest that a reaction of CSI with the alcohol moiety under basic conditions might accelerate the polymerization of urethane in the product. Ozonolysis of compound 10 and the subsequent Pinnick oxidation furnished the acid 12 in 78% overall yield. Fortunately, the minor anti diastereomer of the desired aldehyde 11 could be removed completely (cat. 11%) by column chromatography.¹⁶ Hydrogenation of compound 12 followed by resin purification gave the (+)-5-O-carbamoyl polyoxamic acid (2) in 94% yield.¹⁸ The spectral data (¹H NMR and ¹³C NMR) and specific rotation of compound 2 were in full agreement with the reported literature values.⁵α,²α

In conclusion, we have reported the concise synthesis of (+)-polyoxamic acid and 5-O-carbamoyl polyoxamic acid as pivotal components of polyoxin J. The key steps in the route involve the diastereoselective amination of syn-1,2-polybenzyl ethers using chlorosulfonyl isocyanate and the one-pot introduction of the carbamate moiety into the allylic benzyl ether and primary hydroxyl group.

Acknowledgment

This research was supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2006-311-E00613), and by the Seoul Research and Business Development (Seoul R&B) Program (#10541).

References and Notes

(1) (a) Hunt, S. Chemistry and Biochemistry of the Amino Acids; Barrett, G. C., Ed.; Chapman and Hall: London, 1985,
Synthesis of (+)-Polyoxamic Acid

Let the reader extract the relevant information from the text.
(14) Characterization data for

Bal, B. S.; Childers, W. E. Jr.; Pinnick, H. W.

570.2498; found: 570.2492.

(12)

1H NMR (300 MHz, CDCl3): \(\delta = 3.58-3.66 \) (m, 3 H), 3.72-3.78 (m, 1 H), 4.34 (br, 1 H), 4.44 (d, \(J = 11.7 \) Hz, 1 H), 4.46 (s, 2 H), 4.59 (d, \(J = 11.7 \) Hz, 1 H), 4.73 (s, 2 H), 5.12 (d, \(J = 15.6 \) Hz, 1 H), 5.16 (d, \(J = 15.6 \) Hz, 2 H), 5.26 (br d, \(J = 5.7 \) Hz, 1 H), 7.27-7.41 (m, 20 H), 9.73 (s, 1 H).

13C NMR (125 MHz, CDCl3): \(\delta = 60.19, 67.41, 69.67, 73.05, 73.71, 74.23, 76.69, 78.79, 80.11, 128.14, 128.36, 128.52, 128.59, 128.67, 128.72, 128.75, 128.81, 136.29, 137.62, 137.70, 138.10, 156.38, 197.69.

HRMS (FAB): \(m/z \) [M + H]+ calculated for C\(_{41}\)H\(_{42}\)NO\(_5\): 628.3063; found: 628.3062.

(15) Characterization data for 10:

\([\alpha]_D^{25} \) +3.56 (c 0.5, CHCl3). IR (CHCl3): 3425, 2939, 2865, 2360, 1716, 1507, 1459, 1339, 1067, 697 cm\(^{-1}\). cis-Isomer:

1H NMR (300 MHz, CDCl3): \(\delta = 3.64-3.72 \) (m, 2 H), 4.17 (brs, 2 H), 4.55 (d, \(J = 11.1 \) Hz, 1 H), 4.61 (d, \(J = 11.1 \) Hz, 1 H), 4.65 (d, \(J = 11.1 \) Hz, 1 H), 4.85 (d, \(J = 11.1 \) Hz, 1 H), 5.10 (s, 2 H), 5.18 (d, \(J = 8.4 \) Hz, 1 H), 5.47 (d, \(J = 7.2 \) Hz, 1 H), 7.57 (d, \(J = 11.4 \) Hz, 1 H), 7.67-7.42 (m, 20 H).

13C NMR (125 MHz, CDCl3): \(\delta = 49.43, 62.86, 67.22, 73.43, 75.95, 78.70, 83.19, 126.78, 127.48, 127.91, 128.09, 128.21, 128.36, 128.53, 128.77, 130.84, 131.64, 136.74, 136.86, 138.07, 138.13, 138.25, 156.15, 156.52. trans-Isomer:

1H NMR (300 MHz, CDCl3): \(\delta = 3.80-3.90 \) (m, 2 H), 4.32-4.37 (m, 2 H), 4.61-4.85 (m, 5 H), 5.13 (s, 2 H), 5.48-5.50 (m, 1 H), 6.15 (d, \(J = 15.6 \) Hz, 1 H), 6.58 (d, \(J = 15.6 \) Hz, 1 H), 7.23-7.42 (m, 20 H).

13C NMR (125 MHz, CDCl3): \(\delta = 53.43, 63.13, 66.84, 73.07, 75.47, 77.71, 78.59, 82.01, 126.08, 126.85, 127.90, 128.03, 128.17, 128.29, 128.30, 128.67, 128.81, 131.24, 136.76, 136.85, 137.61, 138.07, 156.26, 156.68.

HRMS (FAB): \(m/z \) [M + H]+ calculated for C\(_{43}\)H\(_{44}\)N\(_2\)O\(_5\): 581.2652; found: 581.2655.

(16) Characterization data for 11:

[\alpha]_D^{25} = -7.5 (c 1.0, CHCl3). IR (CHCl3): 3444, 2972, 2360, 1716, 1508, 1456, 1418, 1339, 1067, 739, 698 cm\(^{-1}\).

1H NMR (300 MHz, CDCl3): \(\delta = 3.72-3.73 \) (m 1 H), 4.17-4.74 (m, 9 H), 5.10-5.15 (m, 2 H), 5.64 (d, \(J = 6.5 \) Hz, 1 H), 7.27-7.42 (m, 15 H), 9.67 (s, 1 H).

13C NMR (125 MHz, CDCl3): \(\delta = 60.03, 62.83, 67.53, 73.10, 74.33, 75.79, 77.91, 128.30, 128.34, 128.47, 128.55, 128.65, 128.69, 128.77, 128.84, 136.24, 137.32, 137.39, 156.39, 156.61, 198.01.

HRMS (FAB): \(m/z \) [M + H]+ calculated for C\(_{36}\)H\(_{35}\)N\(_2\)O\(_5\)Na: 507.2131; found: 507.2142.

(17) Characterization data for 12:

[\alpha]_D^{25} = -10.4 (c 1.0, CHCl3). IR (CHCl3): 3365, 3032, 2965, 2360, 1716, 1508, 1456, 1339, 1220, 1066, 740, 698 cm\(^{-1}\).

1H NMR (500 MHz, CDOD): \(\delta = 3.79 \) (br, 1 H), 4.08 (dd, \(J = 12.0, 5.0 \) Hz, 1 H), 4.30 (d, \(J = 7.0 \) Hz, 1 H), 4.41 (br, \(J = 12.0 \) Hz, 1 H), 4.51 (s, 1 H), 4.57-4.73 (m, 4 H), 5.08-5.14 (m, 2 H), 7.24-7.37 (m, 15 H).

13C NMR (125 MHz, CDOD): \(\delta = 63.26, 66.68, 72.88, 74.66, 78.79, 79.33, 127.50, 127.64, 127.80, 127.96, 128.06, 128.13, 128.29, 136.98, 138.28, 137.47, 157.75, 158.39, 176.12.

HRMS (FAB): \(m/z \) [M + Na]+ calculated for C\(_{38}\)H\(_{37}\)N\(_2\)O\(_5\)Na: 545.1900; found: 545.1903.

(18) Characterization data for 2:

[\alpha]_D^{25} = -1.2 (c 1.0, H2O). mp 215-220 °C (dec.).

1H NMR (500 MHz, D2O): \(\delta = 4.17 \) (br, 1 H), 4.09-4.04 (m, 3 H), 3.82 (br, 1 H).

13C NMR (125 MHz, D2O): \(\delta = 172.95, 159.35, 71.07, 68.28, 65.76, 58.13.

HRMS (FAB): \(m/z \) [M + H]+ calculated for C\(_{38}\)H\(_{37}\)N\(_2\)O\(_5\): 209.0774; found: 209.0776.